Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids
نویسندگان
چکیده
The vacuole is an essential organelle for plant growth and development. It is the location for the storage of nutrients; such as sugars and proteins; and other metabolic products. Understanding the mechanisms of vacuolar trafficking and molecule transport across the vacuolar membrane is of great importance in understanding basic plant development and cell biology and for crop quality improvement. Proteins play important roles in vacuolar trafficking; such proteins include Rab GTPase signaling proteins; cargo recognition receptors; and SNAREs (Soluble NSF Attachment Protein Receptors) that are involved in membrane fusion. Some vacuole membrane proteins also serve as the transporters or channels for transport across the tonoplast. Less understood but critical are the roles of lipids in vacuolar trafficking. In this review, we will first summarize molecular composition of plant vacuoles and we will then discuss our latest understanding on the role of lipids in plant vacuolar trafficking and a surprising connection to ribosome function through the study of ribosomal mutants.
منابع مشابه
Lateral and Rotational Mobilities of Lipids in Specific Cellular Membranes of Eucalyptus gunnii Cultivars Exhibiting Different Freezing Tolerance.
Two cell lines of Eucalyptus gunnii have been shown to keep their differential frost tolerance at the cellular level after long-term culture. They have been used to investigate the fluidity of specific cell membranes in relation with frost tolerance. Protoplasts and isolated vacuoles were obtained from both cell lines. In addition, purified plasma membrane and tonoplast (the vacuolar membrane) ...
متن کاملCurrent Progress in Tonoplast Proteomics Reveals Insights into the Function of the Large Central Vacuole
Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding m...
متن کاملFollowing vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2.
Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpres...
متن کاملThe AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in arabidopsis.
Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion a...
متن کاملModulation in the activity of purified tonoplast H+-ATPase by tonoplast glycolipids prepared from cultured rice (Oryza sativa L. var. Boro) cells.
Glycolipids, phospholipids, and neutral lipids were extracted from the tonoplast fraction of cultured rice cells (Oryza sativa L. var. Boro). Acyl steryl glucoside (ASG) and glucocerebroside (GlcCer) were also prepared from this fraction. We determined the effects of these tonoplast lipids on the activity of H+-ATPase which was delipidated and purified from the tonoplast fraction. Exogenously a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015